Skip to main content
Log in

A Signal Parameter Measurement Technique for Adversely Distorted Multifrequency Grid Signals

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

This paper proposes a simple yet effective signal parameter measurement technique (SPMT) for the accurate estimation of fundamental and harmonic parameters. The proposed method is evolved from the design of adaptive filter bank (AFB) on the basis of frequency spectrum of the input signal and is preceded by compressive sensing (CS). The AFB is capable to decompose the multifrequency signal into its respective modes and CS has got an excellent capability of providing an enhanced frequency resolution in a relatively shorter window. The accuracy of the proposed method is verified on various numerical simulated signal polluted by interharmonics, harmonics, noise, frequency offset, and real-time signal acquired from hardware setup. A comparison with existing approaches viz. empirical wavelet transform, improved adaptive filtering, Prony, exact model order-ESPRIT, sliding ESPRIT is also presented which demonstrates the superiority of the proposed SPMT over other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Langella, A. Testa, J. Meyer, F. Möller, R. Stiegler, S.Z. Djokic, IEEE Trans. Instrum. Meas. 65(10), 2221 (2016). https://doi.org/10.1109/TIM.2016.2554378

    Article  Google Scholar 

  2. S. Akkaya, Salor. IET Sci., Meas. Technol. 13(6), 783 (2019). https://doi.org/10.1049/iet-smt.2018.5338

    Article  Google Scholar 

  3. L. Bartolomei, A. Mingotti, L. Peretto, R. Tinarelli, P. Rinaldi, IEEE Trans. Instrum. Meas. (2019). https://doi.org/10.1109/TIM.2019.2920185

    Article  Google Scholar 

  4. S. Golestan, J.M. Guerrero, F. Musavi, J. Vasquez, IEEE Trans. Power Electron. (2019). https://doi.org/10.1109/TPEL.2019.2910247

    Article  Google Scholar 

  5. L. Feola, R. Langella, A. Testa, IEEE Trans. Instrum. Meas. 62(9), 2399 (2013). https://doi.org/10.1109/TIM.2013.2270925

    Article  Google Scholar 

  6. S. Golestan, J.M. Guerrero, J.C. Vasquez, IEEE Trans. Power Electron. 32(12), 9013 (2017). https://doi.org/10.1109/TPEL.2017.2653861

    Article  Google Scholar 

  7. P. Romano, M. Paolone, IEEE Trans. Instrum. Meas. 63(12), 2824 (2014). https://doi.org/10.1109/TIM.2014.2321463

    Article  Google Scholar 

  8. M.S. Reza, M. Ciobotaru, M.M. Hossain, V.G. Agelidis, I.E.T. Science, Meas. Technol. 13(5), 662 (2019). https://doi.org/10.1049/iet-smt.2018.5323

    Article  Google Scholar 

  9. S. Maharjan, J.C.H. Peng, J.E. Martinez, W. Xiao, P.H. Huang, J.L. Kirtley, IEEE Trans. Power Deliv. 32(1), 33 (2017). https://doi.org/10.1109/TPWRD.2016.2586946

    Article  Google Scholar 

  10. M. Allahbakhshi, M. Tajdinian, A.R. Seifi, M. Zareian Jahromi, IET Sci. Meas. Technol. 13(2), 238 (2019). https://doi.org/10.1049/iet-smt.2018.5149

    Article  Google Scholar 

  11. A. Derviškadić, P. Romano, M. Paolone, IEEE Trans. Instrum. Meas. 67(3), 547 (2018). https://doi.org/10.1109/TIM.2017.2779378

    Article  Google Scholar 

  12. M. Tajdinian, M. Allahbakhshi, A.R. Seifi, M.Z. Jahromi, D. Behi, I.E.T. Science, Meas. Technol. 13(5), 708 (2019). https://doi.org/10.1049/iet-smt.2018.5390

    Article  Google Scholar 

  13. S.K. Jain, S.N. Singh, IEEE Trans. Instrum. Meas. 61(7), 1915 (2012). https://doi.org/10.1109/TIM.2012.2182709

    Article  Google Scholar 

  14. S.K. Jain, S.N. Singh, IEEE Trans. Instrum. Meas. 62(2), 335 (2013). https://doi.org/10.1109/TIM.2012.2217637

    Article  Google Scholar 

  15. D. Belega, D. Petri, D. Dallet, IEEE Trans. Instrum. Meas. 67(5), 1065 (2018). https://doi.org/10.1109/TIM.2017.2785098

    Article  Google Scholar 

  16. J. Gilles, IEEE Trans. Signal Process. 61(16), 3999 (2013). https://doi.org/10.1109/TSP.2013.2265222

    Article  MathSciNet  Google Scholar 

  17. K. Chauhan, M.V. Reddy, R. Sodhi, IEEE Trans Ind Electron. (2018). https://doi.org/10.1109/TIE.2018.2801837

    Article  Google Scholar 

  18. K. Thirumala, A.C. Umarikar, T. Jain, Measurement 131, 677 (2019), http://www.sciencedirect.com/science/article/pii/S0263224118308182

  19. A. Ravelomanantsoa, H. Rabah, A. Rouane, IEEE Trans. Instrum. Meas. 64(12), 3405 (2015). https://doi.org/10.1109/TIM.2015.2459471

    Article  Google Scholar 

  20. M. Bertocco, G. Frigo, C. Narduzzi, F. Tramarin, IEEE Trans. Instrum. Meas. 63(10), 2358 (2014). https://doi.org/10.1109/TIM.2014.2321465

    Article  Google Scholar 

  21. J.A. DelaoSerna, IEEE Trans Instrum Meas 56(5), 1648 (2007). https://doi.org/10.1109/TIM.2007.904546

    Article  Google Scholar 

  22. M. Bertocco, G. Frigo, C. Narduzzi, C. Muscas, P.A. Pegoraro, IEEE Trans. Instrum. Meas. 64(12), 3274 (2015). https://doi.org/10.1109/TIM.2015.2450295

    Article  Google Scholar 

  23. C. Narduzzi, M. Bertocco, G. Frigo, G. Giorgi, IEEE Trans. Instrum. Meas. 67(8), 1825 (2018). https://doi.org/10.1109/TIM.2018.2809080

    Article  Google Scholar 

  24. Y. Han, M. Luo, X. Zhao, J.M. Guerrero, L. Xu, IEEE Trans. Power Electron. 31(5), 3932 (2016). https://doi.org/10.1109/TPEL.2015.2466631

    Article  Google Scholar 

  25. G.W. Chang, C.I. Chen, IEEE Trans. Power Deliv. 25(3), 1787 (2010). https://doi.org/10.1109/TPWRD.2009.2037230

    Article  Google Scholar 

  26. I.Y.H. Gu, M.H.J. Bollen, IEEE Trans. Power Deliv. 23(1), 13 (2008). https://doi.org/10.1109/TPWRD.2007.911130

    Article  Google Scholar 

  27. K. Thirumala, A.C. Umarikar, T. Jain, IEEE Trans. Power Deliv. 30(1), 445 (2015). https://doi.org/10.1109/TPWRD.2014.2355296

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial financial support provided in the FIST grant by the DST, New Delhi, under IIT Ropar project no. ETA-422/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, K., Sodhi, R. A Signal Parameter Measurement Technique for Adversely Distorted Multifrequency Grid Signals. J. Inst. Eng. India Ser. B 102, 927–938 (2021). https://doi.org/10.1007/s40031-021-00615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00615-4

Keywords

Navigation